The authors are grateful to the Scientificic and Technical Research Council of Turkey (TÜBITAK) for financial support, and to Dr C. K. Prout, Dr D. J. Watkin and Dr A. K. Cheetham of the Chemical Crystallography Laboratory, Univ. of Oxford, England, for provision of laboratory and computer facilities.

References

Balci, M. \& Harmandar, M. (1988). Tetrahedron, 44, 3645-3652. Büyükgüngör, O., Harmandar, M. \& Balci, M. (1989). Acta Cryst. C45, 77-79.

Çakmak, O. \& Balci, M. (1989). J. Org. Chem. 54, 181-187.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Davies, K. (1983). SNOOPI. Program for drawing crystal and molecular diagrams. Chemical Crystallography Laboratory, Univ. of Oxford, England.
Hökelek, T., Çakmak, O. \& Balcl, M. (1990). Acta Cryst. C46, 1906-1908.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1986). SHELXS886. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Watkin, D. J., Carruthers, J. R. \& Betteridge, D. W. (1985). CRYSTALS. Program for crystal structure solution. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Synthesis of Hydrophenanthrene Natural Products. Structure of a 17-Nordehydropimarane Derived from Dehydroabietic Acid*

By Alex R. Jürgens and James D. McChesney \dagger
Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

and Robin D. Rogers \dagger
Department of Chemistry, Northern Illinois University, DeKalb, IL 60115, USA

(Received 10 August 1990; accepted 27 November 1990)

Abstract

C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}, M_{r}=318 \cdot 46\), triclinic, $P 1, a=$ $7 \cdot 108$ (1), $\quad b=7 \cdot 362(5), \quad c=9 \cdot 112(2) \AA, \quad \alpha=$ $96 \cdot 21$ (4) $, \quad \beta=89.85(1), \quad \gamma=106 \cdot 31(2)^{\circ}, \quad V=$ $454.8 \AA^{3}, \quad Z=1, \quad D_{x}=1.16 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=0.82 \mathrm{~cm}^{-1}, F(000)=174, T=293 \mathrm{~K}$, final $R=0.046$ for 852 observed $\left[F_{o} \geq 5 \sigma\left(F_{o}\right)\right.$] reflections. The structure reveals a trans relationship between the hydrogen at $C(9)$ and the methyl group $\mathrm{C}(20)$ as well as an R absolute stereochemistry at $\mathrm{C}(13)$. Intermolecular hydrogen-bonded chains along the unit-cell edge \mathbf{c} characterize the crystal lattice.

Introduction. Our interest in the chemistry and biology of hydrophenanthrene natural products has prompted us to investigate the conversion of dehydroabietic acid to diterpenes which may be represented by the pimarane skeleton. Dehydroabietic acid, an abundant abietane diterpene and the major

[^0]constituent of commercial rosin, has been used previously as a synthon (Ohsawa, Ohtsuka, Nakata, Akita \& Shimagaki, 1976; Buchbauer \& Kolbe, 1985) but to date has not been transformed to a pimarane natural product. A reductive alkylation of the aromatic C ring of 13-carboxydeisopropyldehydroabietanol, (1), was seen as the key step in this transformation. In one step from a 13-carboxy derivative (Ohta, 1956) we envisioned, after alkylation with methyl bromide (see below), the creation of two features prerequisite for transformation to the pimarane skeleton: a quaternary methyl at $C(13)$ and the necessary trans-anti $A B C$ ring juncture formed after introduction of the hydrogen at $C(9)$

(1)

(2)
from the α face of the molecule. While it was anticipated that the approach of the newly introduced hydrogen at $\mathrm{C}(9)$ should be controlled by the bulky methyl groups on the 'top' face of the molecule we did not see any possibility of controlling the stereochemistry at $\mathrm{C}(13)$. Nevertheless, the anticipated isomeric products would provide intermediates for conversion to pimarane and sandarocopimarane natural products, differing only in the stereochemistry at $\mathrm{C}(13)$. Some recent reports have appeared of novel pimarane diterpenes with interesting biological activities (De Kimpe, Schamp, Van Puyvelde, Dubé, Chagnon-Dubé, Borremans, Anteunis, Declercq, Germain \& Van Meerssche, 1982; Van Puyvelde, Nyirankuliza, Panebianco, Boily, Geizer, Sebikali, De Kimpe \& Schamp, 1986; Van Puyvelde, Lefebvre, Mugabo, De Kimpe \& Schamp, 1987; Van Puyvelde, De Kimpe, Ayobangira, Costa, Nshimyumuzika, Boily, Hakizamungu \& Schamp, 1988). These reductive alkylation intermediates will provide materials for stereospecific conversion to these and other similar natural substances of potential medicinal interest. Herein we describe the X-ray crystal structure for (2), the methyl ester of one of the reductive alkylation products isolated from a mixture of two isomers. This, the crystalline of the two isomers, is the direct precursor to the primarane family of diterpenes, the methoxycarbonyl group after conversion to a vinyl group will provide the necessary stereochemistry at $\mathrm{C}(13)$.

Experimental. The title compound was obtained as a single isomer in 43% yield following chromatography of the methyl esters of a $1: 1$ mixture of isomers arising from a reductive alkylation of 13 -carboxydeisopropyldehydroabietanol. Crystals (m.p. 389391 K) suitable for X-ray analysis were obtained after recrystallization from acetone/water. The spectral and analytical data for this compound were consistent with the X-ray structure.* D_{m} not determined. Colorless fragment, $\quad 0.18 \times 0.18 \times$ 0.20 mm . Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo $K \alpha, \omega-2 \theta$ scans. Cell constants from setting angles of 25 reflections ($\theta>$ 15°). Corrections for Lorentz polarization were made, but not for absorption. $2 \theta_{\text {max }}=50^{\circ} ; h 0$ to $8, k$ -8 to $8, l-10$ to 10 . Three standard reflections ($300,030,003$) observed every 3600 s of data collection time, variation $\pm 2 \%$. 1598 reflections meas-

[^1]ured, 852 independent observed reflections [$F_{o} \geq$ $5 \sigma\left(F_{o}\right)$. Structure solved using SHELXS (Sheldrick, 1985). Least-squares refinement with isotropic thermal parameters led to $R=0.113$. $\mathrm{O}(1)$ was resolved into two disordered positions. Each was refined in alternate least-squares cycles with occupancy of 50%. Despite the unusual space group no additional symmetry is present to warrant choosing a higher symmetry space group. The geometrically constrained H atoms were placed in calculated positions $0.95 \AA$ from the bonded C atoms and allowed to ride on that atom with B fixed at $5 \cdot 5 \AA^{2}$. The alcoholic H atom was located from a difference Fourier map and included with fixed contributions ($B=5.5 \AA^{2}$). The methyl H atoms were located from a difference Fourier map and included with fixed contributions ($B=5 \cdot 5 \AA^{2}$). Scattering factors and anomalousdispersion corrections from International Tables for X-ray Crystallography (1974, Vol. IV); structure refined with SHELXX6 (Sheldrick, 1976), $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$ minimized, weights $=\left[\sigma\left(F_{o}\right)^{2}+0.00002 F_{o}^{2}\right]^{-1}$, 217 parameters varied. $R=0.046, w R=0.048, S=$ 0.70 . Δ / σ in final least-squares refinement cycle $<0.01, \Delta \rho<0.1$ e \AA^{-3} in final difference map.

Discussion. Fractional coordinates and $B_{\text {eq }}$ values are given in Table 1,* bond distances and angles in Table 2, and an ORTEP drawing (Johnson, 1976) showing absolute stereochemistry in Fig. 1. A cell plot is provided in Fig. 2.

As required in our conversion the hydrogen at $\mathrm{C}(9)$ is of the α orientation providing the trans stereochemical disposition of $\mathrm{H}(9) \mathrm{C}(9)$ and $\mathrm{C}(20)$. The $\mathrm{H}(9) \mathrm{C}(9)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$ torsion angle of $-177 \cdot 5^{\circ}$ is in accord with this finding. This provides the necessary trans-anti $A B C$ ring juncture common to the pimarane diterpene skeleton. The X-ray structure also shows the almost planar nature of the $A B C$ ring system and the $\mathrm{C}(20)$ methyl group which shields the top face of the molecule leading to the introduction of the hydrogen at $C(9)$ from the least hindered α face of the molecule as anticipated. O(1) was resolved into two disordered positions as a 1:1 mixture, probably as a result of distortions in the cell and hydrogen bonding involving $\mathrm{O}(1)$ in the crystal lattice. The ORTEP diagram reveals an R absolute stereochemistry at $\mathbf{C}(13)$ by comparison with known stereochemistry of the natural product dehydroabietic acid. The carboxyl group at $\mathrm{C}(13)$ is shown to be of stereochemistry which will result in production

[^2]Table 1. Final fractional coordinates and equivalent isotropic thermal parameters for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)^{*}$
$\mathrm{O}(1) \dagger$	0.304 (2)	$0 \cdot 150$ (2)	0.471 (2)	$5 \cdot 59$
$\mathrm{O}(1)^{\dagger} \dagger$	0.307 (2)	0.228 (2)	$0 \cdot 500$ (2)	4.54
$\mathrm{O}(2)$	0.601 (1)	0.286 (1)	0.403 (1)	$4 \cdot 79$
$\mathrm{O}(3)$	-0.057 (1)	-0.088 (1)	-0.4755 (9)	$4 \cdot 16$
C(1)	-0.226 (1)	-0.052 (1)	0.003 (1)	$3 \cdot 64$
C(2)	-0.325 (1)	-0.250 (1)	-0.069 (1)	4.08
C(3)	-0.263 (1)	-0.276 (1)	-0.228 (1)	3.48
C(4)	-0.042 (1)	-0.238 (1)	-0.247 (1)	2.95
C(5)	0.062 (1)	-0.040 (1)	-0.1627 (9)	2.54
C(6)	0.288 (1)	0.016 (1)	-0.172 (1)	3.03
C(7)	0.376 (1)	0.227 (1)	-0.117 (1)	2.99
C(8)	0.307 (1)	0.275 (1)	0.033 (1)	2.63
C(9)	0.088 (1)	$0 \cdot 219$ (1)	0.043 (1)	2.81
C(10)	0.0000	0.0000	0.0000	2.78
C(11)	0.025 (2)	0.293 (1)	0.189 (1)	4.04
C(12)	0.144 (1)	0.375 (1)	$0 \cdot 302$ (1)	4.00
C(13)	0.363 (2)	0.405 (1)	$0 \cdot 299$ (1)	$3 \cdot 26$
C(14)	0.427 (1)	0.353 (1)	$0 \cdot 148$ (1)	2.80
C(15)	0.417 (2)	0.282 (1)	0.406 (1)	$3 \cdot 23$
$\mathrm{C}(16)$	0.665 (2)	$0 \cdot 169$ (1)	0.495 (1)	$5 \cdot 25$
C(17)	0.473 (2)	0.615 (1)	0.353 (1)	4.45
C(18)	0.027 (2)	-0.402 (1)	-0.198 (1)	4.82
C(19)	-0.005 (1)	-0.234 (1)	-0.412 (1)	3.80
C(20)	0.074 (1)	-0.106 (1)	$0 \cdot 114$ (1)	$3 \cdot 52$

${ }^{*} B_{\mathrm{eq}}=4 / 3\left[a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+a b(\cos \gamma) \beta_{12}+a c(\cos \beta) \beta_{13}\right.$ $\left.+b c(\cos \alpha) \beta_{23}\right]$.
\dagger Atoms refined at 50% occupancy.

Fig. 1. Thermal-ellipsoid plot of the title compound showing the atom-numbering scheme. H -atom radii are arbitrarily reduced.
of the pimarane diterpene skeleton following chemical conversion to a vinyl group. As a result, the other isomer from the reductive alkylation reaction, isolated as a pure oil and shown by NMR studies to differ only in the stereochemistry at $\mathrm{C}(13)$, is assigned as possessing the S absolute stereochemistry at this position, the direct precursor to the sandarocopimarane series of diterpenes.

The atoms $\mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(11), \mathrm{C}(12), \mathrm{C}(13)$ and $\mathrm{C}(14)$ define a planar C ring to within $0.068 \AA$; the

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$

$\mathrm{O}(1)-\mathrm{C}(15) \quad 1.27$	$1 \cdot 27$ (2)	$\mathrm{O}(1)^{\prime}-\mathrm{C}(15) \quad 1$.	8 (2)
$\mathrm{O}(2)-\mathrm{C}(15) \quad 1.30$	$1 \cdot 30$ (1)	$\mathrm{O}(2)-\mathrm{C}(16) \quad 1.4$	2 (2)
$\mathrm{O}(3)-\mathrm{C}(19) \quad 1.4$	1.41 (1)	$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$.	1 (1)
$\mathrm{C}(1)-\mathrm{C}(10) \quad 1$.	1.545 (9)	$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.5$	2 (1)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1$.	1.53 (1)	$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.5$	(1)
$\mathrm{C}(4)-\mathrm{C}(18) \quad 1.5$	1.53 (2)	$\mathrm{C}(4)-\mathrm{C}(19) \quad 1.5$	(1)
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1$.	1.54 (1)	$\mathrm{C}(5)-\mathrm{C}(10) \quad 1$.	(866 (8)
$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.3$	1.53 (1)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1$.	9 (1)
$\mathrm{C}(8)-\mathrm{C}(9) \quad 1.4$	1.49 (1)	$\mathrm{C}(8)-\mathrm{C}(14) \quad 1.3$	(1)
$\mathrm{C}(9)-\mathrm{C}(10) \quad 1$.	1.564 (8)	$\mathrm{C}(9)-\mathrm{C}(11) \quad 1.5$	50 (1)
$\mathrm{C}(10)-\mathrm{C}(20) \quad 1.5$	1.54 (1)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.3$	1 (1)
$\mathrm{C}(12)-\mathrm{C}(13) \quad 1$.	1.51 (1)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$.	(1)
$\mathrm{C}(13)-\mathrm{C}(15) \quad 1$.	1.53 (2)	$\mathrm{C}(13)-\mathrm{C}(17)$	(1)
$\mathrm{C}(15)-\mathrm{O}(2)-\mathrm{C}(16)$	117.6 (9)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	113.1 (8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111.0 (8)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	114.5 (8)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	108.4 (8)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18)$	$110 \cdot 2$ (8)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(18)$	114.4 (8)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(19)$	106.8 (8)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(19)$	$109 \cdot 7$ (7)	$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(19)$	107.0 (8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$113 \cdot 5$ (8)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	116.8 (6)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$110 \cdot 6$ (6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$110 \cdot 3$ (8)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	111.5 (7)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	113.6 (7)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	123.1 (8)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	123.3 (8)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.8 (7)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	111.6 (7)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	$114 \cdot 5$ (7)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	108.7 (5)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$109 \cdot 6$ (5)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	105.4 (4)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(20)$	108.9 (5)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(20)$	115.4 (5)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$	$108 \cdot 6$ (5)	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	125 (1)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	3) $123 \cdot 1$ (9)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	111.8 (8)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	108.1 (8)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	109.3 (9)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	(10.4 (9)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)$	109.9 (8)
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(17)$	7) 107.2 (8)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	124.4 (9)
$\mathrm{O}(1)-\mathrm{C}(15)-\mathrm{O}(2)$	116 (1)	$\mathrm{O}(1)^{\prime}-\mathrm{C}(15)-\mathrm{O}(2)$	126 (1)
$\mathrm{O}(1)-\mathrm{C}(15)-\mathrm{C}(13)$	129 (1)	$\mathrm{O}(1)^{\prime}-\mathrm{C}(15)-\mathrm{C}(13)$	119 (1)
$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(13)$	113.1(8)	$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(4)$	114.6 (9)

Fig. 2. Cell plot of the title compound.
angles around the olefinic carbons, $\mathrm{C}(8), \mathrm{C}(11)$, $\mathrm{C}(12)$ and $\mathrm{C}(14)$, are all slightly greater than the expected 120°, reflecting this slight distortion from planarity. All other bond lengths and angles are normal.

The intermolecular contacts of the crystal lattice are dominated by a head-to-tail hydrogen-bonded arrangement of molecules along the unit-cell edge \mathbf{c}.

The intermolecular hydrogen-bond distances $\mathrm{O}(1) \cdots \mathrm{H}(1) \mathrm{O}(3)$ and $\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{H}(1) \mathrm{O}(3)$ are 1.70 and $2 \cdot 04 \AA$, for the two disordered positions, respectively. The corresponding $\mathrm{O}(1) \cdots \mathrm{O}(3)$ and $\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{O}(3)$ distances are 2.75 and $2.98 \AA$ while the $\mathrm{C}(15) \cdots \mathrm{H}(1)$ $\mathrm{O}(3)$ close contact is $2 \cdot 82 \AA$.

Conversion of this reductive alkylation product to natural products of possible medicinal interest is currently under way to demonstrate the utility of this reductive alkylation technique.

The authors acknowledge financial support of the Research Institute of Pharmaceutical Sciences of the University of Mississippi in the form of a graduate stipend (ARJ).

References

Buchbauer, G. \& Kolbe, R. (1985). Sci. Pharm. 53, 173-202.

De Kimpe, N., Schamp, N., Van Puyvelde, L., Dubé, S., Chagnon-Dubé, M., Borremans, F., Anteunis, M. J. O., Declerce, J.-P., Germain, G. \& Van Meerssche, M. (1982). J. Org. Chem. 47, 3628-3630.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ohsawa, T., Ohtsuka, Y., Nakata, T., Akita, H. \& Shimagaki, M. (1976). J. Synth. Org. Chem. Jpn, 34, 920-933.

Ohta, M. (1956). Chem. Pharm. Bull. 4, 273-276.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination, locally modified. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Van Puyvelde, L., De Kimpe, N., Ayobangira, F.-X., Costa, J., Nshimyumuzika, P., Boily, Y., Hakizamungu, E. \& Schamp, N. (1988). J. Ethnopharmacol. 24, 233-246.

Van Puyvelde, L., Lefebvre, R., Mugabo, P., De Kimpe, N. \& Schamp, N. (1987). Planta Med. 2, 156-158.
Van Puyvelde, l., Nyirankuliza, S., Panebianco, R., Bolly, Y., Geizer, I., Sebikali, B., De Kimpe, N. \& Schamp, N. (1986). J. Ethnopharmacol. 17, 269-275.

Acta Cryst. (1991). C47, 1678-1680

Structure of trans,endo-1-Phenyl-2-(4-methoxyphenyl)decahydroquinolin-4-one

By M. Nierlich, D. Vigner and M. Lance
CEA CEN/Saclay, SCM, Bâtiment 125, 91191 Gif sur Yvette CEDEX, France
and D. Nogue, R. Paugam and L. Wartski
ICMO, Laboratoire des Carbocycles, CNRS-URA 478, Bâtiment 420, 91405 Orsay CEDEX, France

(Received 19 November 1990; accepted 18 December 1990)

Abstract

C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}, \quad M_{r}=335 \cdot 45\), monoclinic, $P 2_{1} / c, a=15.306$ (7), $b=6.779$ (6), $c=18.004$ (6) \AA, $\beta=91 \cdot 29(2)^{\circ}, \quad V=1867(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.193 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $7.06 \mathrm{~mm}^{-1}, F(000)=720$, room temperature, final R $=0.061$ for 1106 observed reflections $[I>3 \sigma(I)]$. Both the cyclohexane ring and the heterocycle adopt a chair conformation. The N -atom geometry is tetrahedral rather than square planar. The X-ray data provide precise information in good agreement with previously obtained data by ${ }^{1} \mathrm{H}$ NMR.

Introduction. The determination of the structure of the decahydroquinolin-4-one is necessary to understand its reactivity. For the trans-ring-fused 1-phenyl-2-(p-methoxyphenyl)decahydroquinolin-4one, the ${ }^{1} \mathrm{H}$ NMR data permit the determination of the trans relationship between $\mathrm{C}(9)-\mathrm{H}(9)$ and $\mathrm{C}(10)-\mathrm{H}(10)$ bonds both of which occupy an axial position in the cyclohexane ring and moreover
indicate a quasi-equatorial or equatorial position for the $C(2)$ phenyl group depending on the B ring conformation.

Unambiguous assignment of its structure has to be obtained from a single-crystal X-ray structure analysis.

(1)

The preparation and the study of the reactivity of this compound will be reported further.

[^0]: * The Chemical Abstracts name is: $[2 R-(2 \alpha, 4 \mathrm{a} \beta, 4 \mathrm{~b} \alpha, 8 \beta, 8 \mathrm{a} \beta)]-$ $2,4 \mathrm{a}, 4 \mathrm{~b}, 5,6,7,8,8 \mathrm{a}, 9,10$-decahydro-8-(hydroxymethyl)-2,4b,8-tri-methyl-2-phenanthrenecarboxylic acid methyl ester. For the remainder of this paper the more common steroid numbering scheme, as indicated in the reaction scheme, will be used.
 \dagger Authors to whom correspondence should be addressed.

[^1]: * Physical data: IR (KBr) $3538,1710,1248,1111 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.80$ (brd, $1 \mathrm{H}, J=10 \mathrm{~Hz}$), 5.75 (dd, $1 \mathrm{H}, J=10,3 \mathrm{~Hz}$), $5 \cdot 44$ (brs, 1 H$), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3 \cdot 42(\mathrm{~d}, 1 \mathrm{H}, J=$ 10 Hz), 2.30 (brs, 1 H), 2.29 (ddd, $1 \mathrm{H}, J=13,5,2 \mathrm{~Hz}$), 2.06 (ddd, $1 \mathrm{H}, J=13,13,5 \mathrm{~Hz}$), $1 \cdot 76-1 \cdot 68(\mathrm{brd}, 1 \mathrm{H}, J=15 \mathrm{~Hz}$), $1 \cdot 66-1 \cdot 29$ $(\mathrm{m}, 8 \mathrm{H}), 1 \cdot 28(\mathrm{~s}, 3 \mathrm{H}), 1 \cdot 25-1 \cdot 16(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H})$. High-resolution mass spectroscopy: calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$, 318-2193; observed, 318-2199.

[^2]: * Lists of structure factors, anisotropic thermal parameters, least-squares-planes results and final fractional coordinates for H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53791 (7 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

